首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27871篇
  免费   3540篇
  国内免费   5727篇
化学   31503篇
晶体学   166篇
力学   628篇
综合类   161篇
数学   1002篇
物理学   3678篇
  2024年   28篇
  2023年   408篇
  2022年   596篇
  2021年   908篇
  2020年   1503篇
  2019年   1159篇
  2018年   1260篇
  2017年   1145篇
  2016年   1328篇
  2015年   1340篇
  2014年   1836篇
  2013年   2794篇
  2012年   1714篇
  2011年   2001篇
  2010年   1570篇
  2009年   1713篇
  2008年   1847篇
  2007年   1925篇
  2006年   1773篇
  2005年   1644篇
  2004年   1627篇
  2003年   1334篇
  2002年   727篇
  2001年   574篇
  2000年   554篇
  1999年   459篇
  1998年   401篇
  1997年   399篇
  1996年   360篇
  1995年   375篇
  1994年   287篇
  1993年   232篇
  1992年   226篇
  1991年   155篇
  1990年   130篇
  1989年   114篇
  1988年   91篇
  1987年   59篇
  1986年   54篇
  1985年   60篇
  1984年   53篇
  1983年   33篇
  1982年   41篇
  1981年   39篇
  1980年   31篇
  1979年   28篇
  1978年   28篇
  1977年   31篇
  1976年   38篇
  1974年   38篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Pd-based catalysts are the most widely used for CO oxidation because of their outstanding catalytic activity and thermal stability. However, fundamental understanding of the detailed catalytic processes occurring on Pd-based catalysts under realistic conditions is still lacking. In this study, we investigated CO oxidation on metallic Pd clusters supported on Al2O3 and SiO2. High-angle annular dark-field scanning transmission electron microscopy revealed the formation of similar-sized Pd clusters on Al2O3 and SiO2. In contrast, CO chemisorption analysis indicated a gradual change in the dispersion of Pd (from 0.79 to 0.2) on Pd/Al2O3 and a marginal change in the dispersion (from 0.4 to 0.24) on Pd/SiO2 as the Pd loading increased from 0.27 to 5.5 wt %; these changes were attributed to differences in the metal-support interactions. Diffuse reflectance infrared Fourier-transform spectroscopy revealed that fewer a-top CO species were present in Pd supported on Al2O3 than those in Pd supported on SiO2, which is related to the morphological differences in the metallic Pd clusters on these two supports. Despite the different dispersion profiles and surface characteristics of Pd, O2 titration demonstrated that linearly bound CO (with an infrared signal at 2090 cm−1) reacted first with oxygen in the case of CO-saturated Pd on Al2O3 and SiO2, which suggests that a-top CO on the terrace site plays an important role in CO oxidation. The experimental observations were corroborated by periodic density functional calculations, which confirmed that CO oxidation on the (111) terrace sites is most plausible, both kinetically and thermodynamically, compared to that on the edge or corner sites. This study will deepen the fundamental understanding of the effect of Pd clusters on CO oxidation under reaction conditions.  相似文献   
12.
The requirement of green and sustainable materials to prepare heterogeneous catalysts has intensified for practical reasons over the past few decades. Carbohydrates are possibly the most plentiful and renewable organic materials in nature with inimitable physiochemical properties, plausible low-cost and large-scale production, and sustainability features could be exploited in the generation of nanostructured heterogeneous catalysts. This review article outlines the organic transformations catalyzed by diverse carbohydrate-based nanostructured catalysts in greener and environmentally friendly processes. Selected examples are highlighted for a variety of organic reactions exploiting the proposed catalysts’ reactivity and reusability, and interactions with the intrinsic nature of the applied carbohydrate supports; advantages and speculated challenges of the introduced catalysts are deliberated as well.  相似文献   
13.
The great challenge for modern research is to define the most efficient tools to make more sustainable the industrial production and manufacturing. Among the different aspects that require attention the replacement of toxic and/or non-renewable solvents it is certainly playing a crucial role. Dealing with widely used dipolar aprotic solvents, among the different alternatives proposed in the literature γ-valerolactone (GVL) plays a pivotal role covering different application area. In this contribution, the benefits derived from the use of GVL as a circular, safe, biomass-derived reaction medium are highlighted covering most recent publications (2021). The presentation has been divided into three major sections: (i) biomass valorization, (ii) materials synthesis, manufacturing and recycle and (iii) new synthetic methodologies.  相似文献   
14.
15.
Yutuo Guo 《中国物理 B》2022,31(7):76105-076105
Direct visualization of the structural defects in two-dimensional (2D) semiconductors at a large scale plays a significant role in understanding their electrical/optical/magnetic properties, but is challenging. Although traditional atomic resolution imaging techniques, such as transmission electron microscopy and scanning tunneling microscopy, can directly image the structural defects, they provide only local-scale information and require complex setups. Here, we develop a simple, non-invasive wet etching method to directly visualize the structural defects in 2D semiconductors at a large scale, including both point defects and grain boundaries. Utilizing this method, we extract successfully the defects density in several different types of monolayer molybdenum disulfide samples, providing key insights into the device functions. Furthermore, the etching method we developed is anisotropic and tunable, opening up opportunities to obtain exotic edge states on demand.  相似文献   
16.
Cysteine bioconjugation serves as a powerful tool in biological research and has been widely used for chemical modification of proteins, constructing antibody-drug conjugates, and enabling cell imaging studies. Cysteine conjugation reactions with fast kinetics and exquisite selectivity have been under heavy pursuit as they would allow clean protein modification with just stoichiometric amounts of reagents, which minimizes side reactions, simplifies purification and broadens functional group tolerance. In this concept, we summarize the recent advances in fast cysteine bioconjugation, and discuss the mechanism and chemical principles that underlie the high efficiencies of the newly developed cysteine reactive reagents.  相似文献   
17.
The artificially accurate design of nonmetal electrocatalysts’ active site has been a huge challenge because no pure active species with the specific structure could be strictly controlled by traditional synthetic methods. Species with a multiconfiguration in the catalyst hinder identification of the active site and the subsequent comprehension of the reaction mechanism. We have developed a novel electro-assisted molecular assembly strategy to obtain a pure pentagon ring on perfect graphene avoiding other reconstructed structures. More importantly, the active atom was confirmed by the subtle passivation process as the topmost carbon atom. Recognition of the carbon-defect electrocatalysis reaction mechanism was first downsized to the single-atom scale from the experimental perspective. It is expected that this innovative electro-assisted molecular assembly strategy could be extensively applied in the active structure-controlled synthesis of nonmetal electrocatalysts and verification of the exact active atom.  相似文献   
18.
《Mendeleev Communications》2022,32(4):507-509
We report on the synthesis of new Ru(bpy)2(phen) catalyst for the oscillatory Belousov–Zhabotinsky chemical reaction and on the preparation of novel Ru(bpy)2(phen)-based self-oscillating gels. The synthesized gels exhibit high-amplitude autonomous mechanical oscillations when the Belousov–Zhabotinsky reaction proceeds inside these gels  相似文献   
19.
采用固相反应法制备了不同烧结温度(950~1 180 ℃)、烧结时间、烧结次数共7种工艺的Sr3YCo4O10.5+δ多晶块材,通过热分析、XRD、SEM确定了有序化相变和最佳烧结工艺(1 180 ℃/24 h+1 180 ℃/24 h),并研究了多晶的电磁性能。结果表明,964 ℃完全晶化的四方相Sr3YCo4O10.5在1 042 ℃吸氧(δ)完成有序化,生成Sr3YCo4O10.5+δ,而1 100 ℃和1 180 ℃烧结的样品均出现(103)、(215)超结构峰,验证了其结构的有序性。块材均呈半导体电输运行为,二次烧结晶格完整性提高,晶粒长大,300 K时电阻率仅为0.06 Ω·cm,居里温度(Tc)~335 K,零场冷曲线(ZFC)上的Hopkinson峰源于低温时被冻结的磁矩随温度升高转向磁场方向,磁化强度在298 K达到最大,随后受热扰动的影响减小。室温铁磁性源于有序结构导致的中自旋或高自旋态Co3+eg轨道有序。  相似文献   
20.
Constructing atomically dispersed active sites with densely exposed and dispersed double metal-Sx catalytic sites for favorable OER catalytic activity remains rare and challenging. Herein, we design and construct a Fe1Sx@Co3S4 electrocatalyst with Fe single atoms epitaxially confined in Co3S4 nanosheets for catalyzing the sluggish alkaline oxygen evolution reaction(OER). Consequently, in ultralow concentration alkaline solutions(0.1 mol/L KOH), such a catalyst is highly active and robust for OER with low overpotentials of 300 and 333 mV at current densities of 10 and 30 mA/cm2, respectively, accompanying long-term stability without significant degradation even for 350 h. In addition, Fe1Sx@Co3S4 shows a turnover frequency(TOF) value of 0.18 s−1, nearly three times that of Co3S4(0.07 s−1), suggesting the higher atomic utilization of Fe single atoms. Mössbauer and in-situ Raman spectra confirm that the OER activity of Fe1Sx@Co3S4 origins from a thin catalytic layer of Co(Fe)OOH that interacts with trace-level Fe species in the electrolyte, creating dynamically stable active sites. Combined with experimental characterizations, it suggests that the most active S-coordinated dual-metal site configurations are 2S-bridged (Fe-Co)S4, in which Co-S and Fe-S moieties are shared with two S atoms, which can strongly regulate the adsorption energy of reaction intermediates, accelerating the OER reaction kinetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号